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Abstract. We provide a derivation for the particle number densities on phase space for scalar and fermionic
fields in terms of Wigner functions. Our expressions satisfy the desired properties: for bosons the particle
number is positive, for fermions it lies in the interval between zero and one, and both are consistent with
thermal field theory. As applications we consider the Bunch–Davies vacuum and fermionic preheating after
inflation.

1 Introduction

The notion of particles is very intuitive, and at the classi-
cal level, in statistical physics, the dynamics is very suc-
cessfully described by the classical Boltzmann equation
for particle densities in phase space. In quantum physics
however, the uncertainty principle seems to prohibit the
use of phase space densities, and they are replaced by their
closest analogues, the Wigner functions [1,2]. Yet, strictly
speaking they can neither be interpreted as particle num-
bers nor as probability distributions on phase space, since
they may acquire negative values. Attempts have been
made to define particle number in relativistic quantum
kinetic theory [3], but so far there exists no result that
would be applicable to general situations.

In spite of those difficulties, the dynamics of quantum
fields and particle numbers in the presence of temporally
varying background fields has been extensively studied
and is well understood [4–6]. The particle number oper-
ator can be calculated by a Bogolyubov transformation
rotating the Fock space to a new basis, which mixes posi-
tive and negative frequency solutions.

In the analysis presented in this paper we show that
the Wigner function, which we here take as an expectation
value with respect to the ground state of the original basis,
provides the necessary information about the rotated basis
to calculate the particle number produced by the coupling
to time-dependent external fields.

2 Scalars

As the first model case we consider a massive scalar field
minimally coupled to gravity, such that in a conformal
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space-time, with the metric of the form gµν = a2ηµν , the
Lagrangean is given by

√−gLΦ =
1
2
a2ηµν(∂µΦ)(∂νΦ) − 1

2
a4m2

φΦ
2, (1)

where ηµν = diag[1,−1,−1,−1] is the Minkowski (flat)
metric, and a = a(η) is the scale factor. For example, in
inflation a = −1/(Hη) (η < 0), while in the radiation-
matter era, a = arη + amη

2. Here η denotes conformal
time, ar and am are constants.

We quantize the theory (1) by promoting Φ(x) to an
operator,

Φ(x) ≡ ϕ

a
=

1
aV

∑
k

e−ik·x
(
ϕk(η)ak + ϕ∗−k(η)a†−k

)
,

where V denotes the comoving volume. The mode func-
tions obey the Klein–Gordon equation(

∂2
η + ω2

k − a′′/a
)
ϕk = 0, (2)

where ′ ≡ d/dη, ω2
k = k2 + a2m2

φ(η) defines the single
particle (comoving) energy, and we take for the Wronskian

ϕ∗kϕ
′
k − ϕ∗k

′ϕk = i. (3)

Throughout this paper we assume that the modes ϕk = ϕk
(k ≡ |k|) are homogeneous, which is justified when the
mass is varying slowly in space, such that we can ignore
its gradients. The field ϕ = aΦ obeys the canonical com-
mutation relation,

[ϕ(x, η), ∂ηϕ(x′, η)] = iδ3(x − x′), (4)

which implies [ak, a
†
k′ ] = δk,k′ .

The fundamental quantity of quantum kinetic theory
is the two-point Wightman function, which we here write
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for the ground state |0〉 annihilated by ak, ak|0〉 = 0. With
the rescaling suitable for conformal space-times, it reads

iḠ<(u, v) ≡ a(u)iG<(u, v)a(v) = 〈0|ϕ(v)ϕ(u)|0〉 , (5)

and its Wigner transform is defined as

iG<(k, x) =
∫

d4reik·riG<(x+ r/2, x− r/2) ,

which satisfies the Klein–Gordon equation [7, 8](
−ik0∂η +

1
4
∂2
η − k2 + m̄2

φ(η)e
− i

2
←−
∂ η∂k0

)
iḠ< = 0, (6)

where m̄2
φ = a2m2

φ − a′′/a. It is then useful to define the
nth moments of the Wigner function,

fn(k, x) ≡
∫

dk0

2π
kn0 iḠ<(k, x). (7)

Taking the 1st (0th) moment of the imaginary (real) part
of (6) yields [7, 8]

f ′2 − 1
2
(m̄2

φ)
′
f0 = 0,

1
4
f ′′0 − f2 + ω̄2

kf0 = 0, (8)

with ω̄2
k = k2 + m̄2

φ. Eliminating f2 from (8) yields [8]

f ′′′0 + 4ω̄2
kf
′
0 + 2(ω̄2

k)′f0 = 0. (9)

This can be integrated once to give

ω̄2
kf

2
0 +

1
2
f0
′′f0 − 1

4
f ′0

2 =
1
4
, (10)

where the integration constant is obtained by making use
of f0 = |ϕk|2 (cf. (27) below), (2) and the Wronskian (3).

2.1 Bogolyubov transformation

The Hamiltonian density corresponding to the La-
grangean (1) reads

H =
1

2V

∑
k

{
Ωk(aka

†
k + a†kak) + (Λkaka−k + h.c.)

}
,

Ωk = |ϕ′k − (a′/a)ϕk|2 + ω2
k |ϕk|2 ,

Λk =
(
ϕ′k − a′

a
ϕk

)2

+ ω2
kϕ

2
k. (11)

Consider now the homogeneous Bogolyubov transfor-
mation (

âk
â†−k

)
=

(
αk β

∗
k

βk α
∗
k

)(
ak
a†−k

)
, (12)

with the norm
|αk|2 − |βk|2 = 1 , (13)

upon which Λk and Ωk transform as

Λ′k = −2α∗kβkΩk + (α∗k)
2Λk + β2

kΛ
∗
k (14)

Ω′k = (|αk|2 + |βk|2)Ωk − α∗kβ
∗
kΛk − αkβkΛ

∗
k. (15)

In terms of real and imaginary parts, these equations can
be recast as

2|αk||βk|Ωk + |Λ′k| cos(φλ+φα−φβ)
− (|αk|2+|βk|2)|Λk| cos(φΛ−φα−φβ)
= 0, (16)
|Λ′k| sin(φΛ′ + φα − φβ)
− |Λk| sin(φΛ − φα − φβ)
= 0, (17)
Ω′k − (|αk|2 + |βk|2)Ωk

+ 2|αk| |βk| |Λk| cos(φΛ − φα − φβ)
= 0, (18)

with |αk| =
√

1 + |βk|2, and where we have introduced
the phases

Λ′k = |Λ′k| exp (iφΛ′) , Λk = |Λk| exp (iφΛ) (19)
αk = |αk| exp (iφα) , βk = |βk| exp (iφβ) . (20)

Equations (16) and (18) can be combined to give

cos(φλ + φα − φβ) =
(|αk|2 + |βk|2)Ωk −Ω′k

2|αk| |βk| |Λk| , (21)

while (18) gives an expression for cos(φΛ−φα−φβ). Upon
squaring (17) and making use of sin2(ζ) = 1 − cos2(ζ), we
find that

Ω2
k − |Λk|2 = Ω′k

2 − |Λ′k|2 (22)

is an invariant of the Bogolyubov transformations (12).
Next we solve (18) for nk ≡ |βk|2 to find

nk± =
ΩkΩ

′
k ±

√
|Λk|2x2(Ω′k

2 −Ω2
k + |Λk|2x2)

2(Ω2
k − |Λk|2x2)

−1
2
, (23)

where x ≡ cos(ϕΛ−ϕα−ϕβ). Upon extremizing this with
respect to x2, one can show that a maximum is formally
reached for x2

max = Ω2
k/|Λk|2, which must be greater than

one if the Hamiltonian (11) is to be diagonalizable. Taking
account of x2 ≤ 1, one gets that the maximum for nk± is
reached when x2 = 1, for which

nk± =
Ωk
√
Ω2

k − |Λk|2 + |Λ′k|2 ± |Λk| |Λ′k|
2(Ω2

k − |Λk|2) − 1
2
. (24)

Since nk− = 0 when |Λ′k| = |Λk|, the physical branch
corresponds to nk = nk−. Furthermore, when considered
as a function of |Λ′k|, nk ≡ nk− monotonically increases as
|Λ′k| decreases, reaching a maximum when |Λ′k| = 0 (see
Fig. 1), for which the particle number

nk = 〈0|â†kâk|0〉 =
Ωk

2ωk
− 1

2
, (25)
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Fig. 1. Particle number nk as a function of |Λ′
k| for |Ωk| = 2,

|Λk| = 1. Provided |Λ′
k| ≤ |Λk|, nk maximizes at |Λ′

k| = 0

where ωk =
√

k2 + a2m2
φ. This definition, which corre-

sponds to the (constrained) maximum possible particle
number a detector can observe, we shall be using as our
definition for particle number on phase space. Moreover,
note that, in terms of the thus transformed creation and
annihilation operators â†k and âk, the Hamiltonian is di-
agonal

H =
1

2V

∑
k

ωk(âkâ
†
k + â†kâk), [âk, â

†
k′ ] = δk,k′ , (26)

such that our definition agrees with the one advocated,
for example, in [4, 9].

2.2 Particle number in scalar kinetic theory

It is now a simple matter to calculate the particle number
in terms of Wigner functions. Making use of (5) and (7)
we find

|ϕk|2 = f0, |ϕ′k|2 =
1
2
f ′′0 + ω̄2

kf0, (27)

from which it follows that

Ωk = 2
(
ω2

kf0 +
1
4
f ′′0

)
− d

dη

(
a′

a
f0

)
. (28)

We then insert (28) into (25) to get

nk = ωkf0 +
1

4ωk
f ′′0 − 1

2
− 1

2ωk

d
dη

(
a′

a
f0

)
. (29)

This is our main result for scalars, which is positive, sim-
ply because nk ≡ |βk|2 ≥ 0 (see (25)). Equation (29) is of
course not a unique definition of particle number. Indeed,
any Bogolyubov transformation (12) and (13) corresponds
to some particle number definition. Our definition (29) is
however a special one, in that it corresponds to the de-
tector with the best possible resolution, i.e. which mea-
sures the maximum number of particles, as we showed in
Sect. 2.1.

We now apply (29) to the Chernikov–Tagirov [10]
(Bunch–Davies [11]) vacuum,

ϕk =
1√
2k

(
1 − i

kη

)
e−ikη, (30)

which corresponds to the mode functions of a minimally
coupled massless scalar field in de Sitter inflation, a =
−1/Hη (cf. (2)), for which f0 = (2k)−1

(
1+1/(kη)2

)
, lead-

ing to the particle number

nk =
1

4k2η2 = a2
(
H

2k

)2

. (31)

This is to be compared with [12], which finds nk ∼
(−kη)−3 (−kη � 1).

We suspect that the difference is due to the approxi-
mate methods used in [12]. On the other hand, when con-
sidering the transition from de Sitter inflation to radiation,
one finds that the spectrum nk ∼ (−kη0)−4 (−kη0) 	 1
(η0 denotes conformal time at the end of inflation) is pro-
duced [13].

As a consistency check, we now apply (29) to thermal
equilibrium, where the Wigner function is (cf. [14])

iG< = 2πsign(k0)δ(k2 −m2
φ)

1
eβk0 − 1

. (32)

By making use of (7) and (29) we obtain the standard
Bose–Einstein distribution, nk = 1/(eβωk − 1).

Recently, an interesting particle number definition has
been proposed in [15], according to which (expanding
space-times are not considered)(

ñk +
1
2

)2

= |φk|2 |φ′k|2 = f0

(
1
2
f ′′0 + ω̄2

kf0

)
. (33)

Note that in the adiabatic domain, in which f ′′0 → 0, (33)
and (29) both reduce to nk → ωkf0−1/2, such that for ex-
ample in thermal equilibrium of a free scalar theory (32),
both definitions yield the Bose–Einstein distribution. Ac-
cording to the authors of [15], the definition (33) should be
applicable to general situations (whenever there is a rea-
sonably accurate quasiparticle picture of the plasma), and
it is obtained as a consistency requirement on the energy
conservation, and quasiparticle current relation, respec-
tively,

ω2
k

2
|φk|2 +

1
2
|φ′k|2 = ωk

(
1
2

+ ñk

)
, ωk|φk|2 =

1
2

+ ñk .

(34)
The consistency is reached when the kinetic and potential
energies are equal, in which case a generalized quasiparti-
cle energy is given by ω2

k = |φ′k|2/|φk|2.
In order to make a non-trivial comparison, consider

now a pure state of a scalar theory interacting only weakly
with a classical background field (which can be described
by a time-dependent mass term). The WKB form for the
mode functions can be recast as

φk =
1√
2εk

(
α0e−i

∫ η εk(η′)dη′ + β0ei
∫ η εk(η′)dη′

)
, (35)
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φ′k = −i
√
εk
2

(
α0e−i

∫ η εk(η′)dη′ − β0ei
∫ η εk(η′)dη′

)

−1
2
ε′k
εk
φk, (36)

where εk satisfies ε2k = ω2
k − (1/2)ε′′k/εk + (3/4)(ε′k/εk)2.

In a free theory |α0|2 −|β0|2 is conserved, and it is usually
normalized to one. In an interacting theory however, the
single particle description breaks down, and consequently
|α0|2 − |β0|2 is not conserved. For the purpose of this ex-
ample, we assume that the interactions are weak enough,
such that |α0|2 − |β0|2 is changing sufficiently slowly, and
the subsequent discussion applies. In the adiabatic limit
εk → ωk → constant, the particle number (25) and (29)
of the state (36) is simply n(0)

k = |β0|2.
On the other hand, when applied to the state (36), the

definition (33) yields an oscillating particle number even
in the adiabatic regime,

(
ñk +

1
2

)2

≈ 1
4

+ (1 + |β0|2) |β0|2 sin2(2εkη − χα + χβ) ,

(37)
where α0 = |α0|eiχα , β0 = |β0|eiχβ , which is positive and
bounded from above by1 ñk ≤ |β0|2 ≡ n

(0)
k . Hence, for the

state (36) our particle number definition (29) provides an
upper limit for (33). This was to be expected, consider-
ing that (29) was derived in Sect. 2.1 by an extremization
procedure over the Bogolyubov transformations (12). We
expect that a similar behavior pertains in other situations.

3 Fermions

Provided the fields are rescaled as a3/2ψ → ψ and the
mass as am → m, the fermionic Lagrangean reduces to
the standard Minkowski form,

√−gLψ → ψ̄ i∂/ψ − ψ̄(mR + iγ5mI)ψ,

where, for notational simplicity, we omitted the rescaling
of the fields and absorbed the scale factor in the mass
term. Note that the complex mass term m = mR(η) +
imI(η) may induce CP -violation (cf. [16]).

The fermionic Wigner function,

iS<(k, x) = −
∫

d4reik·r〈0|ψ̄(x− r/2)ψ(x+ r/2)|0〉,

1 Note that the definition of the quasiparticle energy, ωk ≡
|φ′

k|/|φk|, oscillates even in the adiabatic limit, with the min-
imum and maximum values given by ωk,min = εk(|α0| −
|β0|)/(|α0| + |β0|) and ωk,max = ε2k/ωk,min, respectively, such
that ωk �= εk in general. This indicates that imposing instanta-
neous equality of the potential and kinetic energies may not be
appropriate in general situations. When particle number is un-
derstood as an average over the characteristic oscillation period
however, imposing equality of the potential and kinetic energy
may lead to a reasonable definition for the particle number
density.

satisfies the corresponding Dirac equation which, in the
Wigner representation, reads(

k/ +
i
2
γ0∂t − (mR + iγ5mI)e−

i
2

←
∂t∂k0

)
iS< = 0, (38)

where (iγ0S<)† = iγ0S< is hermitean. The helicity oper-
ator in the Weyl representation ĥ = k̂ · γ0γγ5 commutes
with the Dirac operator in (38), such that we can make
the helicity block-diagonal ansatz for the Wigner function
(cf. [16])

iS< =
∑
h=±

iS<h , −iγ0S
<
h =

1
4
(
1 + hk̂ · σ

)⊗ ρagah,

(39)
where k̂ = k/|k| and σa, ρa (a = 0, 1, 2, 3) are the Pauli
matrices. Taking the traces of {1,−hγiγ5,−ihγi,−γ5}
times the real part of (38), and integrating over k0, yields
the kinetic equations for the 0th moments of gah,

ḟ0h = 0, (40)

ḟ1h + 2h|k|f2h − 2mIf3h = 0,

ḟ2h − 2h|k|f1h + 2mRf3h = 0,

ḟ3h − 2mRf2h + 2mIf1h = 0, (41)

where

f0h ≡ Tr
[
(1Ph)

∫
dk0

2π
(−iγ0S<)

]
,

f1h ≡ Tr
[
(−hk̂ · γγ5Ph)

∫
dk0

2π
(−iγ0S<)

]
,

f2h ≡ Tr
[
(−ihk̂ · γPh)

∫
dk0

2π
(−iγ0S<)

]
,

f3h ≡ Tr
[
(−γ5Ph)

∫
dk0

2π
(−iγ0S<)

]
, (42)

and Ph = (1/2)[1 + hk̂ · γ0γγ5] denotes the helicity pro-
jector. Equation (40) expresses the conservation of the
Noether vector current. The traces of the imaginary parts
of (38) decouple from (41) at tree level, and hence are of no
importance for the analysis presented here. The moments
fah can be related to the positive and negative frequency
mode functions, uh(k, t) and vh(k, t) = −iγ2(uh(k, t))∗,
respectively. They form a basis for the Dirac field,

ψ(x) =
1
V

∑
kh

e−ik·x(uhakh + vhb
†
−kh

)
, uh=

(
Lh
Rh

)
⊗ ξh,

where ξh is the helicity two-eigenspinor, ĥξh = hξh. The
Dirac equation then decomposes into

i∂0Lh − h|k|Lh = mRRh + imIRh,

i∂0Rh + h|k|Rh = mRLh − imILh. (43)

Note that these equations incorporate CP -violation and
thus generalize the analysis of [5, 6, 17]. Now, from (43)
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one can derive (40) and (41) by multiplying with Lh and
Rh and employing

f0h = |Lh|2 + |Rh|2, f3h = |Rh|2 − |Lh|2,
f1h = −2
(LhR∗h), f2h = 2�(L∗hRh). (44)

The Hamiltonian density reads

H=
1
V

∑
kh

{
Ωkh

(
a†khakh + b†−khb−kh

)
+ (Λkhb−khakh + h.c.)

}
,

where

Ωkh = hk
(|Lh|2 − |Rh|2

)
+mL∗hRh +m∗LhR∗h,

Λkh = 2kLhRh − hm∗L2
h + hmR2

h, (45)

with {âkh, â†k′h′} = δh,h′δk,k′ , {b̂kh, b̂†k′h′} = δh,h′δk,k′ . We
now use the Bogolyubov transformation(

âkh
b̂†−kh

)
=

(
αkh βkh

−β∗kh α∗kh

)(
akh
b†−kh

)
,

to diagonalize the Hamiltonian, where αkh and βkh are

1
2

(∣∣∣∣αkhβkh

∣∣∣∣−
∣∣∣∣βkhαkh

∣∣∣∣
)

=
Ωkh

|Λkh| , |αkh|2 + |βkh|2 = 1, (46)

leading to the particle number density on phase space,

nkh = |βkh|2 =
1
2

− Ωkh

2ωk
, (47)

where now ωk =
√

k2 + |m|2.
To construct the initial mode functions in the adiabatic

domain, η → −∞, we use the positive frequency solution
and its charge conjugate,

ψk →
(
α0L

+
h + β0L

−
h

α0R
+
h + β0R

−
h

)
, |α0|2 + |β0|2 = 1.

From the Dirac equation under adiabatic conditions it fol-
lows that

L+
h =

√
ωk + hk

2ωk
, L−h = −i

m

|m|

√
ωk − hk

2ωk
,

R+
h =

m∗√
2ωk(ωk + hk)

, R−h = i
|m|√

2ωk(ωk − hk)
.

These mode functions correspond to an initial particle
number n(0)

k = |β0|2. We now make use of (44) to express
Ωkh in terms of the Wigner functions,

Ωkh = −(hkf3h +mRf1h +mIf2h), (48)

which implies our main result for fermions,

nkh =
1

2ωk
(hkf3h +mRf1h +mIf2h) +

1
2
. (49)
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Fig. 2. The number of produced fermions as a function of
time with helicity h = + (solid) and h = − (dotted), mass
m/ωI = 10 + 15 cos(2τ) − i sin(2τ), |k| = ωI, τ = ωIt, where ωI

denotes the frequency of the inflaton oscillations

Note that in the limit m → 0, this expression reduces
to the phase space density of axial particles. Moreover,
0 ≤ nkh ≡ |βkh|2 = 1 − |αkh|2 ≤ 1 (see (46)–(47)).

As an application of (49) we consider particle produc-
tion at preheating [9, 17], in which the fermionic mass is
generated by an oscillating inflaton condensate. Assum-
ing that the inflaton oscillates as a cosine function results
in the fermion production shown in Fig. 2. Observe that,
even for a relatively small imaginary (pseudoscalar) mass
term, particle production of the opposite helicity states
is completely different, implying a non-perturbative en-
hancement of a CP -violating particle density, nk+ −nk−,
which may be of relevance for baryogenesis.

When applied to thermal equilibrium, where (cf. [14])

iS< = −(k/ +mR − iγ5mI)δ(k2−|m|2)2πsign(k0)
eβk0 + 1

,(50)

we find

f0h = 1,
f1h = (2mR/ωk)[{exp(βωk) + 1}−1 − 1/2],
f2h = (2mI/ωk)[{exp(βωk) + 1}−1 − 1/2],
f3h = (2hk/ωk)[{exp(βωk) + 1}−1 − 1/2],

such that (49) yields the Fermi–Dirac distribution, nkh =
1/(eβωk + 1).

4 Multiflavor case

We now generalize the definition of particle number in
terms of two-point functions to the case of several species,
mixing through a mass matrix. While in the single-flavor
case always an equal number of particles and antiparticles
is produced, we will here encounter the creation of a charge
asymmetry when the mass matrix is non-symmetric. Be-
cause of this charge violation, the orthogonality of particle
modes with respect to antiparticle modes is not preserved
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under time evolution, and it is thus impossible to expand
the field operators in terms of an orthogonal basis.

Hence, the use of the basis-independent two-point
functions is advantageous. We can either calculate the
time evolution of the system in terms of these quantities
or measure them, since they correspond to physical charge
and current densities. When finally the mass matrix is di-
agonal and only adiabatically slowly evolving, there exists
a well-defined basis, in terms of which the Hamiltonian is
diagonal. We use this basis to define the particle number
operators and construct their expectation values out of
the two-point functions.

4.1 Fermions

Since Dirac spinors naturally include particle and antipar-
ticle modes, we here first discuss the fermionic case. We
decompose the mass matrix M into a hermitean and an
antihermitean part,

MH =
1
2
(M +M†), MA =

1
2i

(M −M†), (51)

such that the Dirac equation reads[
i∂/ −MH − iγ5MA

]
ij
ψj = 0. (52)

One can then attempt to proceed as in the single-flavor
case and construct the field operators as

ψi(x) (53)

=
∑
kh̃j

e−ik·x

V

[
Uh̃ ij(k, t)ah̃ j(k)+Vh̃ ij(k, t)b

†
h̃ j

(−k)
]
,

ψ†i(x)

=
∑
kh̃j

e−ik·x

V

[
a†
h̃ j

(k)U†
h̃ ji

(k, t)+bh̃ j(−k)V †
h̃ ji

(k, t)
]
,

with the mode function

Uh ij =

(
Lh ij
Rh ij

)
⊗ ξh (54)

and its charge conjugate

Vh ij = −iγ2(Uh ij)∗ = CUh ijC
−1 =

(
−hR∗h ij
hL∗h ij

)
⊗ ξ−h.

(55)
This procedure, however, fails, when M is not a sym-

metric matrix, which can easily be seen by plugging Uh ij
into (52)

{i∂0 − h|k|}Lh ij = MH
il Rh lj + iMA

ilRh lj , (56)

{i∂0 + h|k|}Rh ij = MH
il Lh lj − iMA

il Lh lj ,

and Vh ij , respectively,

{i∂0 − h|k|}Lh ij = MH∗
il Rh lj + iMA∗

il Rh lj , (57)

{i∂0 + h|k|}Rh ij = MH∗
il Lh lj − iMA∗

il Lh lj ,

where summation over the repeated index l is implied.
Obviously, when M is not symmetric, (56) and (57)

are inconsistent. In particular, for non-symmetric M , the
orthogonality condition

U†r ilVs lj = 0 (58)

is not preserved at all times, and hence, the expansion of
the field operators (53) is not suitable. This complication
can however lead to the generation of a net charge stored
in the produced particles, because the operation of charge
conjugation becomes time dependent, an effect which may
be of relevance for baryogenesis [18].

The construction of an appropriate Bogolyubov trans-
formation for the case of a symmetric mass matrix is dis-
cussed in [19]. In comparison with the single-flavor case
this procedure is fairly complicated. For the general case,
we therefore refrain from a computation of a Bogolyubov
transformation and the time evolution of Heisenberg cre-
ation and annihilation operators.

It is more convenient to calculate the time evolution
of the initial state in terms of two-point functions. We
straightforwardly generalize the formalism for the single-
flavor Wigner functions to the multiflavor case by defining

iS<ij (k, x) = −
∫

d4reik·r〈ψ̄j(x− r/2)ψi(x+ r/2)〉,(59)

where i, j are flavor indices. These obey the equation of
motion(
k/ +

i
2
γ0∂t − (MH + iγ5MA)e−

i
2

←
∂t∂k0

)
il

iS<lj = 0 . (60)

As described for the single-flavor case in Sect. 3, this can
be simplified and yields

ḟ0h + i [MH , f1h] + i [MA, f2h] = 0, (61)

ḟ1h + 2h|k|f2h + i [MH , f0h] − {MA, f3h} = 0,

ḟ2h − 2h|k|f1h + {MH , f3h} + i [MA, f0h] = 0,

ḟ3h − {MH , f2h} + {MA, f1h} = 0.

As already noted in [18], we can infer from these equa-
tions as a necessary condition for the non-conservation of
the charge density f0h that M must not be symmetric, in
accordance with our discussion above.

Now assume that, after some time evolution, M has
become symmetric and slowly varying. Then, it is possible
to expand the field operators as in (53) and to define the
expectation values of the number of particles

n+
kh i = 〈a†h i(k)ah i(k)〉

and antiparticles

n−kh i = 〈b†h i(k)bh i(k)〉.
Moreover, we choose this basis such that the Hamilton

operator is diagonal and reads

H =
1
V

∑
khij

(
h|k|L†hLh + L†h

[
MH + iMA

]
Rh
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− h|k|R†hRh +R†h
[
MH − iMA

]
Lh

)
ij

(62)

×
(
a†hi(k)ahj(k) − bhi(k)b†hj(k)

)
.

We can now also express the functions f ijµh employing
this basis. Explicitly, they read

f ij0h(x,k)

= −
∫

d4r eik·r〈ψ̄hj(x− r/2)γ0ψhi(x+ r/2)〉

=
(
Lilh
∗
Ljl
′

h +Rilh
∗
Rjl

′
h

)
×
〈
a†hl′(k)ahl(k) + bhl′(k)b†hl(k)

〉
,

f ij1h(x,k)

= −
∫

d4r eik·r〈ψ̄hj(x− r/2)ψhi(x+ r/2)〉

= −2

(
LilhR

jl′
h

∗)
×
〈
a†hl′(k)ahl(k) + bhl′(k)b†hl(k)

〉
,

f ij2h(x,k)

= −
∫

d4r eik·r〈ψ̄hj(x− r/2)(−iγ5)ψhi(x+ r/2)〉

= 2�
(
Lilh
∗
Rjl

′
h

)
×
〈
a†hl′(k)ahl(k) + bhl′(k)b†hl(k)

〉
,

f ij3h(x,k)

= −
∫

d4r eik·r〈ψ̄hj(x− r/2)γ0γ5ψhi(x+ r/2)〉

=
(
Lilh
∗
Ljl
′

h −Rilh
∗
Rjl

′
h

)
×
〈
a†hl′(k)ahl(k) + bhl′(k)b†hl(k)

〉
.

By comparing with the expression (62), we obtain

〈H〉 = − 1
V

∑
khi

(
h|k|f3h ii +MH

ii f1h,ii +MA
ii f2h ii

)
. (63)

We define ωi(k) = (k2 + |Mii|2)1/2, and since we as-
sumed diagonality of the Hamiltonian, this has to equal

〈H〉 =
1
V

∑
khi

ωi(k)〈a†h i(k)ah i(k) − bh i(k)b†h i〉

=
1
V

∑
khi

ωi(k)
(
n+
khi + n−kh i − 1

)
, (64)

while the charge is

f0h ii = 〈a†h i(k)ah i(k) + bh i(k)b†h i〉 = n+
kh i − n−kh i + 1.

(65)
We thus find the following generalization of (49):

n+
khi=

h|k|f3hii+MH
ii f1hii+M

A
ii f2hii

2ωi(k)
+

1
2
f0hii, (66)

n−khi=
h|k|f3hii+MH

ii f1hii+M
A
ii f2hii

2ωi(k)
− 1

2
f0hii+1,(67)

which is of course the anticipated result, since the number
of particles is just the half of the total particle number
(particles plus antiparticles) plus half of the total charge
(particles minus antiparticles).

4.2 Scalars

Consider now a complex scalar field Φi describing N fla-
vors, which we expand into its hermitean and antiher-
mitean parts as follows:

Φi =
1√
2
(Φ1
i + iΦ2

i ), (68)

such that the multiflavor field operator is

Φi =
ϕi
a

(69)

=
1
aV

∑
k

e−ik·x (ϕ1
ij(k, η)a

1
j (k) + iϕ2

ij(k, η)a
2
j (k)

+ ϕ1†
ij (−k, η)a1†

j (−k) + iϕ2†
ij (−k, η)a2†

j (−k)
)
,

where the rescaled fields obey the generalized Klein–
Gordon equation{

∂2
η + k2 + a2M2 − a′′

a

}
il

ϕαlj = 0. (70)

Note that this is independent of whether α = 1 or α = 2,
which is just as in the fermionic case, where the functions
U and V both satisfy the Dirac equation. The individ-
ual components Φ1

i and Φ2
i are imposed to be hermitean.

Therefore,
∑
j(ϕij(k)+ϕij(−k)) has to be real, which can

in general be satisfied only if M2 is real or, more precisely,
real symmetric.

Let us therefore assume again, that we are in a final
state with diagonal and only non-adiabatically varyingM .
We define

a(k) =
1√
2

[
a1(k) + ia2(k)

]
and

b(k) =
1√
2

[
a1(k) − ia2(k)

]
. (71)

Then, we find the charge operator to be

Qi(k) = 〈a†i (k)ai(k) − b†i (k)bi(k)〉 (72)

and the Hamiltonian

H =
1
V

∑
k

Ωi(k)
(
a†i (k)ai(k) + b†i (k)bi(k) + 1

)
, (73)

where Ωi(k) = |ϕ′i(k) − (a′/a)ϕi(k)|2 + ωi(k)2 |ϕi(k)|2,
ω2
i (k) = k2 + a2M2

ii.



142 B. Garbrecht et al.: Particle number in kinetic theory

We define the multiflavor Wightman function as

iḠ<ij = 〈ϕ†j(u)ϕi(v)〉 (74)

and adapt straightforwardly the definition of the momenta
from the single-flavor case. These then satisfy the system
of equations

1
4
f ′′0 − f2 +

1
2
{
a2M2, f0

}
+
(
k2 − a′′

a

)
f0 = 0, (75)

f ′1 − i
2
[
a2M2, f0

]
= 0, (76)

f ′2 − i
2
[
a2M2, f1

]− 1
4
{
(k2 + a2M2 − a′′/a)′, f0

}
= 0. (77)

We find Qi(k) = f1 ii(x,k) + 1, which is also in accor-
dance with the U(1)-Noether charge. Together with the
identities (27), this leads us to

n+
k i=ωif0 ii+

f ′′0 ii
4ωi

− 1
2ωi

d
dη

(
a′

a
f0 ii

)
+

1
2
f1 ii, (78)

n−k i=ωif0 ii+
f ′′0 ii
4ωi

− 1
2ωi

d
dη

(
a′

a
f0 ii

)

−1
2
f1 ii −1, (79)

where n+
k i is the number of particles, n−k i the number of

antiparticles, and the same simple interpretation as in the
fermionic case applies.

5 Discussion

We have derived general expressions for the particle num-
ber densities on phase space for single scalars (29) and
fermions (49) in terms of the appropriate Wigner func-
tions. We have then generalized our analysis to the case
of mixing scalars, (78) and (79), and fermions, (66) and
(67). All of these expressions are positive, and moreover,
the number of fermions is bounded from above by unity,
as required by the Pauli principle. In order to incorpo-
rate the effect of the self-energy into (29) and (49), one
needs to include this correction into the dispersion rela-
tion, ω = ω(k, x) → ω + ΣH(k, x), where ΣH(k, x) ≡∫

[dk0/(2π)](1/2)[Σr(k, x) + Σa(k, x)], and Σr and Σa

denote the retarded and advanced self-energies, respec-
tively [20]. When the single particle picture breaks down
it is not clear whether a sensible definition of particle num-
ber can be constructed. Our analysis can be quite straight-
forwardly extended to include (time-varying) gauge fields
by coupling them canonically to scalars and fermions.

The kinetic theory definition of the particle number is
of course by construction identical with the definition in
terms of Bogolyubov transformations. The number of in-
dividual particles is the total energy of the system divided
by the energy of an individual particle. Taking the point of
view of kinetic theory proves advantageous when consid-
ering statistical systems, such as the thermal equilibrium,
or the multiflavor case.

While the fermionic particle number definition (49)
is generally applicable, the scalar one (29) fails however
when ω2

k = k2 + a2m2
φ < 0, which can happen at phase

transitions. Then Ωk < |Λk| in (11), and the Bogolyubov
transformation (12) does not have a solution. Neverthe-
less, even in this case, the energy density on phase space
Ωk in (28) is well defined and should be considered as a
fundamental quantity of kinetic theory. Another impor-
tant quantity is Λ∗k = 〈k,−k|H|0〉, the transition ampli-
tude for particle pair creation with the momenta {k,−k};
and likewise Λk is the transition amplitude for pair annihi-
lation. The appropriate description in this case is in terms
of squeezed states. For an account of the inverted har-
monic oscillator in terms of squeezed states, see e.g. [22].

Our definition of particle number can be used for
studies of the quantum-to-classical transition, decoher-
ence and entropy calculations of e.g. cosmological pertur-
bations [22–24]. Moreover, when suitably normalized, the
particle density nk can be used to define a density matrix
on phase space, �k = nk/

∑
k′ nk′ .

In the derivation of our results, we considered pure
quantum states, yet showed explicitly their applicability
to thermal states. More generally, our definitions are valid
if one requires the density matrix � to satisfy 〈akak〉� =
〈a†ka†k〉� = 0. These relations hold e.g. for eigenstates of
the particle number operator N̂k ≡ a†kak, and, as pointed
out in [21], for random phase states, a special case of
which is the canonical ensemble. States of this kind can
be treated as a linear superposition of the particle number
eigenstates which we considered above.

Finally, we note that after the first version of this ar-
ticle appeared, an out-of-equilibrium investigation of the
dynamics of chiral fermions coupled to scalars was stud-
ied in [25]. In order to show that at late times the system
thermalizes to the Fermi–Dirac equilibrium, the authors
used the particle number definition which can be in our
notation written as

ñk =
1
2

∑
h=±

ñkh , ñkh =
1
2

(1 + hf3h) . (80)

This definition corresponds to the massless fermion limit,
m → 0, of our definition (49).
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